The impact of global elevated CO₂ concentration on photosynthesis and plant productivity[†]

Attipalli R. Reddy*, Girish K. Rasineni and Agepati S. Raghavendra

Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India

The alarming and unprecedented rise in the atmospheric concentration of greenhouse gases under global climate change warrants an urgent need to understand the synergistic and holistic mechanisms associated with plant growth and productivity. Photosynthesis is a major process of sequestration and turnover of the total carbon on the planet. The extensive literature on the impacts of climate change demonstrates both positive and negative effects of rising CO₂ on photosynthesis in different groups of higher plants. Significant variation exists in the physiological, biochemical and molecular responsiveness to elevated CO₂ atmosphere, among terrestrial plant species including those with C₃, C₄ and crassulacean acid metabolic (CAM) pathways. However, the regulatory events associated with the inter- and intraspecific metabolic plasticity governed by genetic organization in different plants are little understood. The adaptive acclimation responses of plants to changing climate remain contradictory. This review focuses primarily on the impacts of global climate change on plant growth and productivity with special reference to adaptive photosynthetic acclimative responses to elevated CO_2 concentration. The effects of elevated CO₂ concentration on plant growth and development, source-sink balance as well as its interactive mechanisms with other environmental factors including water availability, temperature and mineral nutrition are discussed.

Keywords: Climate change, elevated CO₂, interactions, photosynthesis, plant productivity, rubisco.

RECENT interest in understanding plant responses to changing global climate makes this review timely. Increase in atmospheric CO₂ concentrations and the associated rise in temperature and precipitation patterns will

*For correspondence. (e-mail: arrsl@uohyd.ernet.in)

have profound effects on terrestrial plant growth and productivity in the near future. According to the Intergovernmental Panel on Climate Change (IPCC)¹, the preindustrial levels of carbon in the atmosphere rose from 285 μ mol l⁻¹ (600 gigatonnes (Gt)) to the current level of 384 µmol l⁻¹ (800 Gt) and the predicted rise in the atmospheric CO_2 would approach 1000 Gt by the year 2050. Such an abnormal rise in the levels of atmospheric CO_2 would result in direct and indirect global climate changes. The increase in CO₂ concentrations as well as other greenhouse gases, due to anthropogenic intensification, will result in an increase in global average temperatures which would further result in drastic shifts in the annual precipitation^{2,3}. IPCC report projects the average rise in the global temperatures to be as high as 6.4°C by 2100. associated with an annual 20% reduction in precipitation, and about 20% loss in soil moisture⁴. The Kyoto Protocol of 1997 had a focus on reducing CO₂ emission and stabilization of atmospheric CO₂ concentration by a combination of limitation on the use of fossil fuel and creation of carbon sinks within a specified time frame. Deep oceans were predicted to be potential sinks for the global carbon mitigation but later it was realized that CO₂ absorption rate by the oceans is slow and would take several centuries to reach effective equilibrium with the atmosphere, and, thus we face a growing concern on how to sequester the increasing atmospheric CO_2 (ref. 5).

Climate change affects plant growth and development primarily due to changes in photosynthetic carbon assimilation patterns. The acclimatory responses of plants to the rapidly changing environment and understanding the potential impacts of multiple interacting factors (water availability, temperature, soil nutrition and ozone) have become a subject of debate over the past two decades. Conflicting reports on plant responses to elevated CO₂, and several such differential photosynthetic responses, could be attributed to differences in experimental technologies, plant species used for the experiments, age of the plant as well as duration of the treatment 6,7 . The direct and indirect effects of climate change on plants have been significant sources of uncertainty in the impact assessments and parameterization which are crucial for modelling plant growth and productivity. Further, the sensitivity of photosynthesis to each of the environmental variables

[†]This is the fourth article on the theme 'Photosynthesis and the Global Issues' being guest-edited by Govindjee, George C. Papageorgiou and Baishnab C. Tripathy. The first article by Lars Olof Björn and Govindjee discussed the evolution of photosynthesis and the chloroplasts and was published in 2009 (vol. 96, pp. 1466-1474); the second article, by Maria Ghirardi and Prasanna Mohanty, discussed hydrogen production by algae, and was published in 2010 (vol. 98, pp. 499-507); the third article by Gernot Renger reviewed 'Light reactions of photosynthesis', and was published in 2010 (vol. 98, pp. 1305-1319).

including high temperature, low water availability, vapour pressure deficit and soil salinity, associated with the inevitable rise in atmospheric CO₂, has not been well documented in assessing plant responses to the new changing environment⁸. It is estimated that the current average annual net primary productivity is $\sim 107 \text{ PgC year}^{-1}$ with \sim 51% coming from land, whereas oceans contribute the rest, ~49% (ref. 9). Capturing atmosphere CO_2 by photosynthesis is crucial for the production of food, fibre and fuel for the humanity; future changes in global climate should play an essential role in modifying the key processes involved in photosynthetic productivity⁹. The specific objective of this review is to evaluate the recent studies on plant responses to global climate change with a critical assessment on photosynthesis research to offset the effects of the predicted future increase in atmospheric CO₂.

Photosynthesis in the changing climate

C_3 plants

The bulk of vegetation belongs to the C₃ photosynthesis group. This group is called C₃ because the 'first' product of carboxylation is a 3-carbon acid, phosphoglyceric acid (PGA)^{10,11}. Out of 15 crops which supply 90% of the world's calories, 12 have the C₃ photosynthetic pathway. C_3 photosynthesis is known to operate at less than optimal CO₂ levels and can show dramatic increase in carbon assimilation, growth and yields. A classical experiment of Kimball¹² showed biomass increase of 10–143% in several C_3 crops in response to doubling of the ambient CO_2 . A literature survey (1994–2009; Table 1) on the influence of elevated CO₂ among certain C₃, C₄ and crassulacean acid metabolism (CAM) species suggests that most of the C₃ plants showed a significant positive response to photosynthetic acclimation, Sorghum and Panicum (two C₄ plants) exhibited negative response, whereas Ananas, Agave and Kalanchoe (CAM plants) showed positive responses to increased CO₂ concentration during growth $(Table 1)^{13-56}$.

The advantage of efficient CO_2 assimilation in C_3 plants has been related to the availability of increased substrate in the atmosphere and in the fact that they do not have to bear the metabolic costs of CO_2 concentrating mechanism at the site of carboxylation⁸. Photosynthesis in C_3 plants is usually influenced by RuBP (ribulose bisphosphate) carboxylase–oxygenase (rubisco) (EC 4.1.1.39) and by the accumulation of carbohydrates during carbon assimilation. This activity of the enzyme would cause the combination of CO_2 with RuBP followed by dismutation into two molecules of 3-PGA, which is known as the first committed step in the Calvin–Benson–Bassham cycle⁵⁷. As rubisco is substrate-limited by the current atmospheric CO_2 levels, this enzyme has the potential to respond to increases in CO_2 concentration;

and have a metabolic control to alter the CO₂ flux during carbon assimilation^{8,58}. Elevated CO₂ is known to be advantageous to the kinetic characteristics of rubisco as it increases the velocity of carboxylation and at the same time competitively inhibits the oxygenase reaction⁵⁹. Most of the studies on pot-grown C₃ plants under elevated CO₂ have indicated photosynthetic acclimation, which might be due to soil and nutrient limitation associated with reduced root volume. However, experiments conducted in open top chambers (OTCs) and free atmospheric CO₂ enrichment (FACE) environment showed significant increases in light-saturated rates of photosynthesis in several C_3 plants grown at elevated CO_2 (ref. 56). The marked increase in net assimilation rates has been explained to be due to increased intercellular CO₂ concentrations (Ci). Increased photosynthetic rates, as observed in such studies, fit into C₃ leaf model photosynthesis as proposed by Farquhar et al.⁶⁰, wherein increase in photosynthetic rates under high CO₂ levels was determined by the activity of rubisco when RuBP regeneration was not limiting^{8,61}

As implied above, elevated CO_2 atmosphere increases the carboxylation efficiency relative to oxygenation, resulting in reduced photorespiration. Strong reduction in photosynthetic rates under elevated CO_2 conditions has been associated with reduction in the initial slope of A/C_i (*A*, photosynthetic rate and C_i , internal CO_2 concentration) response curve due to reduced rubisco activity⁸. Decrease in rubisco catalytic activity has been attributed to the repression of transcription of small subunit gene, which will be discussed later in this review.

The activity of carbonic anhydrase (CA) (EC 4.2.1.1) was also thought to be crucial in photosynthetic acclimation. CA activities were predicted to enhance the rate of photosynthesis by catalysing the rapid equilibration of inorganic carbon and thus increasing the supply of CO₂ across the stroma in the chloroplast⁶². CA was low in most of the plants exposed to elevated CO_2 (ref. 63), but enhanced CA activities were noticed in Arabidopsis and Zea mays (maize or corn), grown at elevated CO₂, indicating difficulties in the interpretation of the role of CA in photosynthetic acclimation^{64,65}. However, research on the response of different isoforms of CA and their polyfunctionality in concentrating CO₂ near the carboxylation site should provide useful evidence for the positive role of CA as a regulator for photosynthetic acclimation. The role of other enzymes including sucrose phosphate synthase (EC 2.4.1.14), ADPG pyrophosphorylase (EC 2.7.7.9), rubisco activase and phosphoenolpyruvate carboxylase (PEP-Case) (EC 4.1.1.31) in regulating carbon assimilation under elevated CO_2 has now received greater attention'.

Changes in photosynthetic rates and acclimatory responses in C_3 plants grown under elevated CO_2 concentration could also be attributed to the feedback metabolic control wherein large accumulation of foliar starch and other carbohydrates could inhibit CO_2 assimilation rates,

REVIEW ARTICLE

Plant species	Treatment	Response	Reference
Eucalyptus pauciflora	Open-top chamber	Positive response	Atwell et al. ¹³
Alfalfa	Controlled environmental chamber	Positive response	Aranjuelo et al. ¹⁴
Acacia nigrescens	Controlled environmental chamber	No response	Possell and Hewitt ¹⁵
Gossypium hirsutum	Controlled environmental chamber	Positive response	Yoon <i>et al.</i> ¹⁶
Cucumis sativus	Controlled environmental chamber	Positive response	Kosobryukhov ¹⁷
Oryza sativa	FACE	Positive response	Shimono et al.18
Pinus taeda	FACE	Positive response	Crous et al. ¹⁹
Quercus ilex	Natural CO ₂ spring	Positive response	Paoletti et al.20
Phleum pratense	Natural CO ₂ spring	Positive response	Pfanz <i>et al.</i> ²¹
Betula papyrifera	Controlled environmental chamber	No response	Zhang et al. ²²
Glvcine max	Open-top chamber	Positive response	Srivastava <i>et al.</i> ²³
Panderosa pine	Open-top chamber	No response	Johnson <i>et al.</i> ²⁴
Temperate forest trees	FACE	No response	Korner <i>et al.</i> ²⁵
Populus species	FACE	Positive response	Wittig et al. ²⁶
Reta vulgaris	Controlled environmental chamber	Positive response	Ignatova <i>et al</i> 27
Trifolium alexandrium	Open-ton chamber	Positive response	Madan <i>et al</i> ²⁸
I olium perenne	FACE	Positive response	Ainsworth <i>et al</i> 29
Citrus raticulata	Controlled environmental chamber	Negative response	Vu et al ³⁰
Sorohum vulgare		Ne response	Ottman at al^{31}
Solgnum vulgure	Chan tan shambar	A colimatory response	Lawson at al^{32}
Orrangena ilan	Netural CO aming	Desitive response	Dalla et al^{33}
Quercus nex	Natural CO ₂ spring	Positive response	Polle <i>et al.</i>
Pinus koraiensis	Open-top chamber	Positive response	Shi-Jie <i>et al.</i>
Liquidambar styraciflua	FACE	Positive response	Norby <i>et al.</i>
Solanum tuberosum	Open-top chamber	Acclimatory response	Schapendonk <i>et al.</i>
Picea sitchensis	Open-top chamber	Positive response	Centritto <i>et al.</i>
Luehea seemannii	Open-top chamber	No response	Lovelock <i>et al.</i> ³⁶
Dactylis glomerata			
Bellis perennis	Controlled environmental chamber	Positive response	Gunn et al. ³⁹
Solim a sup only a	Controlled environmental shamber	A colimatory roomance	Show and Lin ⁴⁰
Schima superba	Controlled environmental chamber	Acclimatory response	
Ananas comosus	Controlled environmental chamber	Positive response	Zhu et al.
Lolium perenne	FACE	Negative response	Rogers <i>et al.</i>
Gossypium hirsutum	Controlled environmental chamber	Positive response	Reddy <i>et al.</i>
Befula pendula	Open-top chamber	Acclimatory response	Rey and Jarvis
Havea brasiliensis	Poly bag environmental chamber	Positive response	Dev kumar <i>et al.</i>
Panicum antidotale	Controlled environmental chamber	No response	Ghannoum <i>et al</i> . ⁴⁰
Mokara spp.	Controlled environmental chamber	Positive response	Gouk <i>et al.</i> ⁴⁷
Citrus aurantium	Open-top chamber	Positive response	Idso and Kimball ⁴ °
Kalanchoe pinnata	Controlled environmental chamber	Positive response	Winter <i>et al.</i> ⁴⁹
Agave deserti	Controlled environmental chamber	Positive response	Graham and Nobel ⁵⁰
Agave salmiana	Controlled environmental chamber	Positive response	Nobel et al. ⁵¹
Stenocereus queretaroensis	Controlled environmental chamber	Positive response	Nobel ⁵²
Fagus sylvatica	Open-top chamber	Positive response	Mousseau et al.53
Quercus alba	Open-top chamber	Positive response	Norby et al.54
Populus euramericana	Controlled environmental chamber	Positive response	Bosac et al.55
Gossypium hirsutum	FACE	Positive response	Mauney et al.56

Table 1. Literature survey (1994–2009) on the influence of elevated CO₂ among different plant species

whereas the plants with potential sinks for carbohydrate translocation and accumulation may not show any down-regulation of photosynthetic capacity suggesting that imbalances in source–sink could be attributed to the variations in the photosynthetic acclimation in different plants⁸. The relationship between carbohydrate accumulation rates and concomitant increase in respiration in plants under enriched CO_2 is still a matter of controversy. Higher dark respiration rates were recorded in several C_3 plants grown in high CO_2 environment whereas certain C_4 plants did not show any changes in foliar respiration⁶⁶. Further, the reallocation of resources away from the non-limiting processes including rubisco into limiting ones

might also result in the acclimation of the photosynthetic apparatus resulting in down-regulation of carbon assimilation rates under elevated CO_2 growth regimes⁶⁷. The role of starch and sucrose accumulation during photosynthetic acclimation in the leaves grown under elevated CO_2 is still a subject of debate. Some evidence suggests that monosaccharides rather than starch and sucrose activate the signal for photosynthetic acclimation in plants⁶⁸.

A two-season (spring and summer) experiment conducted in our experimental field at the University of Hyderabad (Hyderabad, India) for three consecutive years (2006–2008), using a tree species *Gmelina arborea* Roxb (Verbenaceae) under CO₂-enriched atmosphere in open

Character	Ambient CO ₂	Elevated CO ₂				
Plant height (cm)	209.45 ± 2.12	359.92 ± 2.78***				
Basal diameter (cm)	13.21 ± 0.59	28.40 ± 0.80 ***				
Number of branches	26.20 ± 0.72	44.20 ± 1.19***				
Total shoot length (m)	30.73 ± 1.05	59.62 ± 1.43**				
Number of leaves/longest shoot	52.70 ± 2.00	108.60 ± 3.12***				
Leaf length (cm)	28.10 ± 0.98	37.62 ± 1.12**				
Relative plant height growth rate (g day ⁻¹)	2.97 ± 0.45	$4.08 \pm 0.72 **$				
Leaf size expansion rate	3.89 ± 0.57	9.75 ± 1.02***				
Root weight (kg)	3.96 ± 0.89	$5.97 \pm 0.85^{**}$				
Leaf weight (kg)	10.81 ± 1.03	15.54 ± 2.12***				
Stem weight (kg)	14.86 ± 0.75	22.13 ± 3.12***				
Aerial biomass (kg)	25.67 ± 2.32	37.67 ± 2.98**				
Plant biomass (kg)	29.63 ± 1.67	43.64 ± 3.12***				

Table 2. Phenotypic characteristics and biomass yields as influenced by CO_2 (ambient – 360 µmol mol⁻¹; elevated – 460 µmol mol⁻¹) in *Gmelina arborea* recorded at the end of two growth seasons (Rasineni and Reddy, unpublished data)

Values are mean \pm SD. Values were tested by paired *t*-test, ***p < 0.001, **p < 0.01

Figure 1. Five-month-old *Gmelina arborea* plants grown in open top chambers under ambient (*a*) and elevated (*b*) CO_2 concentrations. CO_2 was supplied from a high pressure CO_2 cylinder, injected through pressure regulator and was monitored by a CO_2 analyser. The height of ambient CO_2 grown plant was ~ 210 cm, while that of the plant grown under elevated CO_2 was ~ 360 cm. The other growth characteristics of these plants are shown in Table 2. After screening several tree species for their growth characteristics under elevated CO_2 , we have selected *G. arborea* as its growth was found to be very fast in response to increased CO_2 concentrations.

top chambers $(4 \times 4 \times 4 \text{ m}, \text{Figure 1})$, demonstrated a significant up-regulation of photosynthesis throughout the growing season (Table 2). Plants grown under high CO₂ (460 µmol l⁻¹) showed high rates of photosynthesis compared to those grown under ambient CO₂ levels (360 µmol l⁻¹). After the harvest during all seasons, the biomass yields were markedly higher (48%) in the plants grown under elevated CO₂. Unlike many other reported plant species, growth of *Gmelina* in elevated CO₂ resulted in increased root volume, stem diameter,

CURRENT SCIENCE, VOL. 99, NO. 1, 10 JULY 2010

altered branching pattern and significant increase in plant height. We attribute the positive correlation between photosynthesis and the morphological characteristics of Gmelina to be due to potential sink capacity which is crucial to the understanding of the physiological, biochemical, genetic and environmental limitations for the productivity in plants grown in CO₂-enriched atmosphere. These potential changes in the growth and development of Gmelina under elevated CO₂ may also be ascribed to increased cell division, cell expansion, cell differentiation and organogenesis, stimulated by increased carbon and more efficient water use⁶⁹. We believe that optimal utilization of resources and well-balanced source-sink activity might enhance carbon gain in plants grown under elevated CO₂. However, the ability of exploiting the extra carbon by any plant species might largely be a function of its inherent structural and physiological attributes, integrated with the plasticity of morphological and anatomical characteristics.

Other factors which can influence plant responses to elevated CO₂ are the growth environment, soil nutrition and the genetic organization of the plant species. The direct effects of rising CO₂ on plant growth and metabolism are a modulation of stomatal conductance, changes in carboxylation capacity, and accumulation of photoassimalates. These three regulatory mechanisms will have a wide range of indirect effects on growth and development of plants, as shown in Figure 2. Davey et al.⁷ postulated that fast growing perennial species would have a greater advantage of having a better sink strength which could result in the up-regulation of carbon metabolism unlike the annual species wherein photosynthetic acclimation has been frequently recorded due to less efficient sink capacity. Different experiments on the effects of elevated CO₂ on photosynthetic capacity in C₃ plants indicate either up- (or) down-regulation, which varies with genetic and interactive environmental factors.

REVIEW ARTICLE

Figure 2. Schematic representation of the effects of elevated CO_2 on the regulation of plant growth and metabolism. Factors affecting up- or down-regulation of photosynthesis in annual and perennial plant species are shown.

C₄ plants

Most of the research on plant responses to elevated CO₂ has been carried out with C₃ species, whereas C₄ plants have received very little attention. These plants are called C_4 plants because the 'first' product of carboxylation is a 4-C acid (e.g. malic acid); the C-4 pathway, is also called the Hatch-Slack pathway⁷⁰. The lower attention on C_4 plants in the studies of the effects of increased CO_2 has been attributed to the assumption that the inherent CO₂ concentrating mechanism in C₄ plants renders these plants insensitive to elevated CO₂ atmosphere. Under natural atmospheric conditions, the biochemistry of C_4 photosynthesis elevates CO₂ concentration in the bundle sheath cells approximately to 2100 µmol l⁻¹, which is at least 10 times more than that present in the mesophyll cells of the C₃ plants. This substantially higher CO₂ level saturates the carboxylase reaction and abolishes photorespiration⁷¹. Moreover, photosynthesis in C₄ plants is more readily saturated at the normal atmospheric CO₂ concentrations, which reflects that PEPCase is insensitive to changes in the ratio of CO_2 : O_2 due to lack of binding of O₂ to the catalytic site of PEPCase. However, several reports indicate that C₄ plants also significantly respond to elevated CO_2 concentration by showing enhanced carbon uptake^{72,73}.

Some C₄ plants grown under FACE exhibited increased photosynthetic rates only during drought or under the conditions of atmospheric vapour pressure deficits^{74,75}. Ghannoum *et al.*⁷⁶ reported that C₄ plants, grown under

high irradiance, showed enhanced photosynthesis under elevated CO₂ conditions, whereas there was not much response in the growth of C₄ species under low irradiance. Doubling of the current ambient CO₂ concentration stimulated the growth of C₄ plants to the tune of 10–20% whereas that in C₃ plants was about 40–45% (ref. 76). It is also well known that the growth stimulation of C₄ weeds is much larger compared to that of C₄ crops.

Although certain C₄ plants showed positive response to elevated CO₂, the underlying mechanisms for the enhanced growth responses are still not clear. In addition to improved photosynthetic rates under elevated CO₂, C₃ plants exhibited reduced mitochondrial respiratory rates, which could contribute to increased biomass yield. However, little is known about the impact of elevated CO₂ on the respiratory rates of C₄ plants. The positive responses of certain C₄ plants to elevated CO₂ were believed to be due to differences in bundle sheath leakiness, biochemical subtype, and direct CO₂ fixation in the bundle sheath cells as well as C3-like photosynthesis in young and developing leaves of C_4 species⁷⁷. Further, the lack of photosynthetic acclimation in C₄ plants (in contrast to several C₃ plants) could be attributed to relatively less rubisco protein and more active carbonic anhydrase and PEPcase. Although there are several studies on the interactive effects of increased air temperature, nutrients, water availability and elevated CO₂, very little is known about such interactive influence of elevated CO₂ with the environmental variables during growth of C_4 plants⁷⁵.

Crassulacean acid metabolism

CAM photosynthesis is known to occur in approximately 7% of the vascular plants^{78,79}. CAM is one of the three types of photosynthesis used by vascular plants in which nocturnal CO₂ fixation results in the formation of malate, which is decarboxylated during day time releasing CO₂, which in turn is assimilated into carbohydrates⁸⁰. Compared to the studies on the effects of elevated CO₂ in C₃ and C₄ plants, very little is known about the response of CAM plants to increasing atmospheric CO₂ concentrations. CAM plants are known for their considerable inherent photosynthetic plasticity associated with environmental conditions during different developmental stages^{78,81}. The characteristic features of nocturnal CO₂ fixation in CAM plants and variation in responses of carboxylating enzymes (both rubisco and PEPCase) make generalization of their response more complex than those of C₃ and C₄ plants. Although certain CAM plants show stimulated rates of photosynthesis and 20-40% increase in biomass production, under elevated atmospheric CO_2 concentrations, with no acclimation during growth, contradictory range of responses of these plants to elevated CO₂ have been reported, which include increase and/or decrease in nocturnal CO₂ uptake, daytime CO₂ fixation patterns as well as in water use efficiency⁸².

The lack of acclimation in CAM plants under elevated CO_2 has been attributed to the succulence which could be a diffusional constraint to CO₂ as well as to accommodate large amount of photosynthate to avoid feedback inhibition. The significant increase in biomass production in CAM plants under elevated CO₂ atmosphere, on marginal arid and semi-arid lands, suggests that CAM plants could also be exploited for terrestrial sequestration of atmospheric CO₂ in the changing global environment. Further, the exceptional degree of stress tolerance in CAM plants to water-deficit regimes, high temperatures and high light intensities should render these plants robust to the predicted harsh impacts of the future global climate change. The lack of acclimation of CAM species under elevated atmospheric CO₂ concentrations could enhance the importance of several economically important CAM plants worldwide in improving the photosynthetic productivity.

Interactions between elevated CO₂ and other environmental factors

The literature survey (1994–2009), shown in Table 3, demonstrates that the responses of different plant species are due to interaction of elevated CO_2 with other environmental variables including temperature, nutrients, water availability and ozone levels in the atmosphere^{24,40,83–105}. The majority of the experiments (Table 3) demonstrate positive response to elevated CO_2 when grown under controlled conditions. The positive response was primarily due to improved photosynthetic rates which were associated with increased biomass yields. Most of the climate change-related plant growth models have been based on predicted estimates of future emissions of greenhouse gases and the simulation of their influence on plant growth and development⁹. Thus, several simulated crop growth models have limitations, and certain uncertainties, as there is no integrated approach in considering the interactions of variable climate factors along with the impact of greenhouse gas emissions. The relative importance of other factors including water availability, soil nutrition, temperature, relative humidity and ozone, which could possibly interact with the effects of elevated CO_2 , need to be better understood.

Temperature

Available literature indicates that semi-arid plants will greatly benefit from a rise in the atmospheric CO₂ concentration, such crops show greater percentage increase in yield under elevated CO2. Morison and Lawlor's¹⁰⁶ classical explanation is that the specificity of rubisco for CO_2 relative to O_2 declines with increasing temperature. C₃ plants exhibit stimulated rates of photosynthesis with increase in temperature under elevated atmospheric CO₂ concentration. Theoretical calculations on the interactive effects of elevated CO₂ concentration and temperature were based on the carboxylation to oxygenation ratios. Such studies confirm that the predicted positive CO₂ uptake may be increased by an increase in the temperature at least by 2-4°C at elevated atmospheric CO2 concentration. Ainsworth and Long¹⁰⁷ reported that light-saturated rates of photosynthesis under elevated CO₂ concentrations in FACE experiments were enhanced by 19% at 25°C and below, whereas those conducted above 25°C showed 30% increase in photosynthetic rates. High temperatures might also affect/alter the carbon utilization rates of the fast growing metabolic sinks, reducing carbohydrate accumulation, which in turn enhances the upregulation of photosynthesis under high CO₂. High (e.g. 36°C) and low (e.g. 18°C) temperatures are known to reduce carbohydrate export through phloem resulting in downward acclimation in CO₂-enriched atmosphere⁴³. However, the actual consequences of rise in temperature (above 35°C), associated with increase in atmospheric CO_2 concentration, are difficult to predict as these interactive effects are still to be established in combination with other environmental variables including drought stress and nutrient availability.

Soil nitrogen

Nitrogen (N) is required in relatively very large quantities for growth and development of plants, especially for plants grown under elevated CO_2 atmosphere. Plant N

REVIEW ARTICLE

Plant species	Treatment	Interacting factors	Response	References
Gossypium hirsutum	Controlled environmental chamber	Temperature (high)	Positive response	Yoon <i>et al.</i> ⁸³
Citrus reticulata	Controlled environmental chamber	Temperature (high)	No response	Allen and Vu ⁸⁴
Betula albosinensis	Controlled environmental chamber	Planting density	Acclimatory response	Zhang et al. ⁸⁵
Betula papyrifera	Controlled environmental chamber	Nitrogen (high)	Positive response	Cao et al. ⁸⁶
Solanum tuberosum	SPAR chamber	Water stress	Positive response	Fleisher et al.87
Quercus mogolica	Controlled environmental chamber	Temperature (high)	Positive response	Wang et al. ⁸⁸
Hordeum vulgare	Controlled environmental chamber	Dry soil condition	Positive response	Robredo et al.89
Daucus carota	Controlled environmental chamber	High irradiance	Positive response	Thiagarajan <i>et al.</i> 90
Molinia caerulea	Controlled environmental chamber	Nutrients (increased)	No response	Franzaring et al. ⁹¹
Betula papyrifera	Controlled environmental chamber	Nutrients (increased)	Positive response	Zhang et al. ⁹²
Pinus ponderosa	Open-top chamber	Nitrogen (high)	No response	Johnson et al.24
Brassica napus	Controlled environmental chamber	High temperature drought	Positive response	Qaderi et al.93
Gossypium hirsutum	Controlled environmental chamber	Potassium fertilizer	Positive response	Reddy and Zhao94
Oryza sativa	Controlled environmental chamber	Drought	Positive response	Widodo et al.95
Citrus reticulata	Controlled environmental chamber	Temperature (high)	Positive response	Vu et al. ⁹⁶
Acacia farnesiana				
Gleditsia triacanthos	Controlled and incompanies to be and on	Drought	Positive response	Polley et al.97
Leucaena leucocephala	Controlled environmental chamber			
Parkinsonia aculeate				
Prosopis glandulosa				
Andropogon gerardii	Open-top chamber	Dry season	Positive response	Adam et al.98
Cucumis sativus	Controlled environmental chamber	Heat stress	Positive response	Taub et al. ⁹⁹
Larrea tridentate	Controlled environmental chamber	Heat stress	Positive response	Hamerlynck et al. ¹⁰⁰
Schima superba	Controlled environmental chamber	Temperature (high)	Positive response	Sheu and Lin40
Quercus suber	Controlled environmental chamber	Low soil moisture	Positive response	Faria <i>et al</i> . ¹⁰¹
Glycine max	Open-top chamber	Ozone (high)	Positive response	Reid et al.102
Oryza sativa	Controlled environmental chamber	Ozone	Positive response	Olszyk and Wise ¹⁰³
Eucalyptus macrorhyncha	Controlled environmental chamber	Low soil moisture	Negative response	Roden and Ball ¹⁰⁴
Eucalyptus rosii				
Betula populifolia				
Betula alleganiensis	Controlled environmental chamber	Heat stress	Negative response	Bassow et al. ¹⁰⁵
Acer pennsylvanicum				

 Table 3.
 Literature survey (1994–2009) on the interactive influence of elevated CO₂ with different environmental variables among different plant species

productivity (g dry weight increase per unit plant N content) is known to increase under elevated CO_2 to sustain the photosynthetic rates similar to those observed at ambient CO_2 , but with a reduced investment in leaf N¹⁰⁸. Rubisco acclimation in plants grown under elevated CO_2 results in substantial saving in leaf N, which would be greater in crop species compared to tree species. FACE experiments have proven that plants grown with low N accumulate more foliar carbohydrates associated with greater rubisco acclimation compared to those grown with high N supply⁷⁵. Perhaps, more N is to be provided for the plants grown under elevated CO_2 to offset the N-limited biochemical events.

A recent analysis showed a positive interaction between elevated CO_2 and N, indicating that limitation of soil N might progressively suppress the positive responses in photosynthetic carbon acquisition and biomass to elevated CO_2 (refs 109 and 110). Such limitation of CO_2 fertilization under reduced N availability may not be noticed under N-rich soils. Most of the elevated CO_2 studies have considered soil N as the limiting factor with relatively less attention to other essential mineral nutrients. Possible molecular reprogramming/genetic manipulation of N use efficiency under excess sugar environment

52

would be highly favourable to plants grown under elevated CO_2 . For example, genetic manipulation of nitrogen metabolism, specifically over-expression of rate limiting enzymes of nitrogen assimilation, could improve the capacity of nitrogen sink for overloaded sugar. Further research is needed to establish the role of other nutrients to understand the mechanisms of their effects on the acclimation of plants under elevated CO_2 . Photosynthetic acclimation to elevated CO_2 would be more pronounced under nutrient-limited conditions whereas adequate nutrient supply is believed to mitigate the elevated CO_2 mediated acclimation, at least in crop species.

Water availability

Interactive studies on water availability and elevated CO_2 show that there will be a partial closure of stomata due to increased CO_2 concentration in the substomatal cavity decreasing partial pressure of CO_2 in the leaf and this CO_2 -dependent amplification of stomatal response could improve water use efficiency at the leaf and whole plant level⁸. In a wide range of experiments, plants grown under elevated CO_2 had substantial decrease in stomatal conductance (g_s) showing acclimation of g_s to elevated CO₂. Decreased g_s might increase leaf temperature, which could increase the rates of transpiration. However, different experimental techniques used by Wullschleger *et al.*¹¹¹ led to the conclusion that plants grown under elevated CO₂ possessed increased root surface and root volume due to increased allocation of carbon to root growth. Such increase in the surface area of roots enables the plants grown under elevated CO₂ to exploit more water even from deep soil layers. However, the decrease in stomatal conductance may also be offset by increased leaf area in plants grown under elevated CO₂ and thus water use by the whole plant may not be proportional to stomatal conductance.

For the actual determination of water use efficiency in plants under CO_2 -enrichment, rates of transpiration on plant basis and/or on ground area basis are essential. It is believed that decreased stomatal conductance is an interactive factor and low water availability might be beneficial for plant productivity under increased CO_2 concentration in the atmosphere. The availability of water as an interactive environmental factor suggests that the reduced leaf level stomatal conductance under elevated CO_2 might also influence the whole canopy conductance to water than mitigating the water loss and conserving the available soil moisture.

Expression of photosynthetic genes in plants under CO₂-enrichment

The molecular processes of high CO₂-driven photosynthetic gene expression in plants are not completely understood. As variable acclimation responses have been reported in plant species grown under elevated CO₂, it is crucial to understand the extent of variation among different plants which exhibit up- or down-regulation of photosynthesis to accurately predict the impact of global CO₂ rise on growth and productivity of plants. The upand down-regulation of photosynthates under elevated CO₂ is a complex process regulated by morphophysiological changes associated, during plant growth and development, with particular reference to carbon allocation between source and sink tissues of either annual or perennial plants as shown in Figure 2. Van Oosten and Besford¹¹² showed a rapid down-regulation of rubisco small subunit (rbcS) transcript in high CO₂-grown tomato plants when the sink demand was low. Steady state level of carbonic anhydrase mRNA increased in Arabidopsis grown under elevated CO_2 (ref. 64). It was speculated that the progressive accumulation of sugars due to insufficient sink strength renders nuclear genes more sensitive than the chloroplastic genes¹¹². Transcript abundance differences were recorded wherein chloroplast-related functions were down-regulated and increased expression was associated with development and signalling functions^{113–115}.

Figure 3. A summary of morphological, physiological, biochemical and molecular characteristics in plants affected by rising atmospheric CO_2 concentrations.

Significant increase in the levels of soluble sugars in the high CO_2 -grown leaves was associated with increased activities of hexokinase (EC 2.7.1.1) to be a sensor of sugars in plant cells. Phosphorylated glucose was shown to signal the sugar-sensitive genes in the nucleus, which suppressed biosynthesis of the rubisco small subunit¹¹⁶. The varying responses in gene expression to elevated CO_2 among different plants indicate that response of plants to elevated CO_2 is species-specific. Elevated CO_2 also increased the transcript level of genes encoding glycolytic pathway and tricarboxylic acid (TCA) cycle in soybean¹¹⁴.

Developmental changes associated with the use of different types of growth chambers were also known to significantly affect the profile of transcripts in the leaves of ambient and high CO₂-grown plants. Nitrogen deficiency resulted in reduced expression of genes for chlorophyll protein complex $(cab)^{117}$. Fukayama *et al.*¹¹⁸ have reported down-regulation of genes associated with CO₂ assimilation and up-regulation of genes encoding RuBP regeneration and starch synthesis in the leaves of rice grown under elevated CO₂. Interestingly, the expression of gene for rubisco activase was up-regulated suggesting a compensatory regulation of photosynthesis, which could be present between rubisco and rubisco activase¹¹⁸.

Figure 3 summarizes morphological, physiological, biochemical and molecular responses in plants affected by elevated atmospheric CO_2 . Increased or decreased biomass yields in plants grown under elevated CO_2 would certainly depend upon the source–sink balance which in turn would be associated with changes in activities of key photosynthetic enzymes and the expression of photosynthetic genes.

Conclusions and future strategies

The exact consequences of alarming rise in atmospheric CO_2 concentration are difficult to predict due to the exis-

tence of its interactive relationships with many of the environmental variables including temperature, radiation, water availability, visible and ultraviolet sunlight, salinity and soil nutrition. Therefore, the interactive effects of multiple environmental factors on plant responses to rising CO_2 require a careful study. Such information should demonstrate how the multiple environmental factors, when altered in a changed climate, could interact with each other resulting in increase or decrease in the growth and metabolism of several plants.

An immediate and significant increase in photosynthesis can be exploited as a major strategic adaptation to mitigate the global rise in atmospheric CO_2 . The veracity of information on morphological, physiological, biochemical and molecular responses of different plants to elevated CO_2 suggests that photosynthetic acclimation and the resulting down-regulation of plant metabolism is due to imbalances between the source–sink capacity.

Future genetic studies on sugar management for biomass production in green plants, exposed to increased CO_2 concentration in the atmosphere, would be extremely important. Genetic transformation of plants for efficient nitrogen assimilation under elevated CO₂ could be highly useful in improving the capacity of nitrogen sink to mitigate excessive accumulated sugars. It would also be useful to understand the impact of elevated CO₂ on primary photosynthetic reactions including photosystem II (PS II)¹¹⁹ photochemical performance. Evolution of plants from C₃ to C₄ indicates that elimination of photorespiration was due to high level concentration of CO₂ around rubisco. Studies on single cell photosynthesis to substantially increase the concentration of CO₂ around the carboxylating system(s), by engineering C₄ genes into C₃ plants, could lead to producing C₄-like environment in these plants.

The intensity of photosynthetic acclimatory responses to rising CO_2 is species-specific. Significant positive photosynthetic acclimation responses would be noticed if a large sink is available to accommodate excess carbon as seen in the tree species, *G. arborea*. The up-regulation of photosynthesis under elevated atmospheric CO_2 in *G. arborea* suggests that this tree could potentially become a dominant species with better net primary productivity under future global climate change scenario. If photosynthetic acclimation can be decreased either through breeding or by potential recombinant DNA technology, many of the C_3 and C_4 food crops could profit more from the constant increase in the atmospheric CO_2 concentrations and the concomitant changes in the global climate.

Quantification of trade-offs between certain key physiological traits among various plant types is highly essential for the understanding of the potential effects of physiological adjustments as well as the competition between individual plants. A major challenge would be to develop a whole plant for optimal acclimation responses for increasing atmospheric CO_2 concentrations and its interactions with various growth environments. It would also be interesting to evaluate the genetic variability among plants for acclimatory adaptive responses within a specific interactive environmental context. We believe that genetic manipulation of crop plants for positive acclimatory responses is an extremely useful strategy to obtain optimal crop yields under predicted changing global climate.

- 1. IPCC, *Climate Change, Fourth Assessment Report*, Cambridge University Press, London, 2007.
- Reddy, A. R. and Gnanam, A., Photosynthetic productivity under CO₂-enriched atmosphere in 21st century – review. In *Probing Photosynthesis: Mechanism, Regulation and Adaptation* (eds Yunus, M., Pathre, U. and Mohanty, P.), Taylor and Francis, UK, 2000, pp. 342–363.
- 3. Chaplot, V., Water and soil resources response to rising levels of atmospheric CO₂ concentration and to changes in precipitation and air temperature. *J. Hydrol.*, 2007, **337**, 159–171.
- 4. Schiermeier, Q., Water: A long dry summer. *Nature*, 2008, **452**, 270–273.
- Kirschbaum, M. U. F., Can trees buy time? An assessment of the role of vegetation sinks as part of the global carbon cycle. *Clim. Change*, 2003, 58, 47–71.
- Sage, R. F., How terrestrial organisms sense, signal and respond to carbon dioxide. *Integr. Comp. Biol.*, 2002, 42, 469–480.
- Davey, P. A., Olcer, H., Zakhleniuk, O., Bernacchi, C. J., Calfapietra, C., Long, S. P. and Raines, C. A., Can fast growing trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? *Plant Cell Environ.*, 2006, **29**, 1235–1244.
- Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R., Rising atmospheric carbon dioxide: Plants FACE the future. *Annu. Rev. Plant Biol.*, 2004, 55, 591–628.
- Friend, A. D., Geider, R. J., Behrenfeld, M. J. and Still, C. J., Photosynthesis in global-scale models. In *Photosynthesis in silico* (eds Laiska, A., Nedbal, L. and Govindjee), Springer, The Netherlands, 2009, pp. 465–497.
- Benson, A. A., Following the path of carbon in photosynthesis: A personal story. *Photosynth. Res.*, 2002, **73**, 29–49.
- 11. Bassham, J. A., Mapping the carbon reduction cycle: a personal retrospective. *Photosynth. Res.*, 2003, **76**, 35–52.
- Kimball, B. A., Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. *Agron. J.*, 1983, **75**, 779–788.
- Atwell, B. J., Henery, M. L. and Ball, M. C., Does soil nitrogen influence growth, water transport and survival of snow gum (*Eucalyptus pauciflora* Sieber ex Sprengel.) under CO₂ enrichment? *Plant Cell Environ.*, 2009, **32**, 553–566.
- Aranjuelo, I., Irigoyen, J. J., Nogués, S. and Sánchez-Díaz, M., Elevated CO₂ and water-availability effect on gas exchange and nodule development in N₂-fixing alfalfa plants. *Environ. Exp. Bot.*, 2009, **65**, 18–26.
- Possell, M. and Hewitt, C. N., Gas exchange and photosynthetic performance of the tropical tree *Acacia nigrescens* when grown in different CO₂ concentrations. *Planta*, 2009, **229**, 837–846.
- Yoon, S. T., Hoogenboom, G., Flitcroft, I. and Bannayan, M., Growth and development of cotton (*Gossypium hirsutum* L.) in response to CO₂ enrichment under two different temperature regimes. *Environ. Exp. Bot.*, 2009, 67, 178–187.
- Kosobryukhov, A. A., Activity of the photosynthetic apparatus at periodic elevation of CO₂ concentration. *Russ. J. Plant Physiol.*, 2008, 56, 8–16.

- Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T., Genotypic variation in rice yield enhancement by elevated CO₂ relates to growth before heading, and not to maturity group. *J. Exp. Bot.*, 2008, **60**, 523– 532.
- Crous, K. Y., Walters, M. B. and Ellsworth, D. S., Elevated CO₂ concentration affects leaf photosynthesis–nitrogen relationships in *Pinus taeda* over nine years in FACE. *Tree Physiol.*, 2008, 28, 607–614.
- Paoletti, E., Seufert, G., Della, G. R. and Thomsen, H., Photosynthetic responses to elevated CO₂ and O₃ in *Quercus ilex* leaves at a natural CO₂ spring. *Environ. Pollut.*, 2007, **147**, 516– 524.
- Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Batič, F., Turk, B. and Maček, I., Photosynthetic performance (CO₂-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (*Phleum pratense* L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. J. Environ. Exp. Bot., 2007, 61, 41–48.
- Zhang, Y., Duan, B., Qiao, Y., Wang, K., Korpelainen, H. and Li, C., Leaf photosynthesis of *Betula albosinensis* seedlings as affected by elevated CO₂ and planting density. *Forest Ecol. Manag.*, 2008, 255, 1937–1944.
- Srivastava, A. C., Tiku, A. K. and Pal, M., Nitrogen and carbon partitioning in soybean under variable nitrogen supplies and acclimation to the prolonged action of elevated CO₂. *Acta Physiol. Plant.*, 2006, 28, 181–188.
- Johnson, D. W., Hoylman, A. M., Ball, J. T. and Walker, R. F., Ponderosa pine responses to elevated CO₂ and nitrogen fertilization. *Biogeochemistry*, 2006, 77, 157–175.
- Korner, C. *et al.*, Carbon flux and growth in mature deciduous forest trees exposed to elevated CO₂. *Science*, 2005, **309**, 1360– 1362.
- Wittig, V. E. *et al.*, Gross primary production is stimulated for three *Populus* species grown under free-air CO₂ enrichment from planting through canopy closure. *Glob. Change Biol.*, 2005, **11**, 644–656.
- Ignatova, L. K., Novichkova, N. S., Mudrik, V. A., Lyubimov, V. Y., Ivanov, B. N. and Romanova, A. K., Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO₂. *Russ. J. Plant Physiol.*, 2005, **52**, 158–164.
- Madan, P., Karthikeyapandian, V., Jain, V., Srivastava, A. C., Raj, A. and Sengupta, U. K., Biomass production and nutritional levels of berseem (*Trifolium alexandrium*) grown under elevated CO₂. Agr. Ecosyst. Environ., 2004, **101**, 31–38.
- Ainsworth, E. A., Rogers, A., Blum, H., Nösberger, J. and Long, S. P., Variation in acclimation of photosynthesis in *Trifolium repens* after eight years of exposure to free air CO₂ enrichment (FACE). J. Exp. Bot., 2003, **393**, 2769–2774.
- Vu, J. C. V., Gesch, R. W., Pennanen, A. H., Allen, H. L., Boote, K. J. and Bowes, G., Soybean photosynthesis, rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO₂. J. Plant Physiol., 2001, **158**, 295–307.
- 31. Ottman, M. J. *et al.*, Elevated CO₂ increases sorghum biomass under drought conditions. *New Phytol.*, 2001, **150**, 261–273.
- Lawson, T., Craigon, J., Tulloch, A.-M., Black, C. R., Colls, J. J. and Landon, G., Photosynthetic responses to elevated CO₂ and O₃ in field grown potato (*Solanum tuberosum*). *J. Plant Physiol.*, 2001, **158**, 309–323.
- Polle, I. A. and McKee, L. B., Altered physiological and growth responses to elevated (CO₂) in offspring from holm oak (*Quercus ilex* L.) mother trees with lifetime exposure to naturally elevated (CO₂). *Plant Cell Environ.*, 2001, 24, 1075–1083.
- Shi-Jie, H., Yu-mei, Z., Chen-rui, W., Jun-hui, Z. and Chun-jing, Z., Ecophysiological responses and carbon distribution of *Pinus* koraiensis seedlings to elevated carbon dioxide. J. Forest. Res., 2000, 11, 149–155.

 Norby, R. J., Long, T. M., Hartz-Rubin, J. S. and O'Neill, E. G., Nitrogen resorption in senescing tree leaves in a warmer CO₂enriched atmosphere. *Plant Soil*, 2000, **224**, 15–29.

- 36. Schapendonk, H. C. M., van Oijen, M., Dijkstra, P., Pot, C. S., Wilco, J. R. M., Stoopen, J. and Stoopen, G. M., Effects of elevated CO₂ concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. *Aust. J. Plant Physiol.*, 2000, 27, 1119–1130.
- Centritto, M., Lee, H. S. J. and Jarvis, P. G., Long-term effect of elevated carbon dioxide concentrations and provenance on four clones of Sitka spruce (*Picea sitchensis*). I. Plant growth, allocation and ontogeny. *Tree Physiol.*, 1999, **19**, 799–806.
- Lovelock, C. E., Virgo, A., Popp, M. and Winter, K., Effects of elevated CO₂ concentrations on photosynthesis, growth and reproduction of branches of the tropical canopy tree species, *Luehea seemannii* Tr. & *Planch. Plant Cell Environ.*, 1999, 22, 49–59.
- 39. Gunn, S., Bailey, S. J. and Farrar, J. F., Partitioning of dry mass and leaf area within plants of three species grown at elevated CO₂. *Funct. Ecol.*, 1999, **13**, 3–11.
- 40. Sheu, B-H. and Lin, C-K., Photosynthetic response of seedlings of the sub-tropical tree *Schima superba* with exposure to elevated carbon dioxide and temperature. *Environ. Exp. Bot.*, 1999, **41**, 57–65.
- Zhu, J., Goldstein, G. and Bartholomew, D. P., Gas exchange and carbon isotope composition of *Ananas comosus* in response to elevated CO₂ and temperature. *Plant Cell Environ.*, 1999, 22, 999–1007.
- 42. Rogers, A., Fischer, B. U., Bryant, J., Frehner, M., Blum, H., Raines, C. A. and Long, S. P., Acclimation of photosynthesis to elevated CO₂ under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under freeair CO₂ enrichment. *Plant Physiol.*, 1998, **118**, 683–689.
- Reddy, A. R., Reddy, K. R. and Hodges, H. F., Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves. *Plant Growth Regul.*, 1998, 26, 33–40.
- Rey, A. and Jarvis, P. G., Long-term photosynthetic acclimation to elevated CO₂ in birch (*Betula pendula* Roth.). *Tree Physiol.*, 1998, 18, 441–450.
- Devakumar, A. S., Shesha Shayee, M. S., Udayakumar, M. and Prasad, T. G., Effects of elevated CO₂ concentration on seedling growth rate and photosynthesis in *Hevea brasiliensis*. J. Biosci., 1998, 23, 33–36.
- 46. Ghannoum, O., von Caemmerer, S., Barlow, E. W. R. and Conroy, J. P., The effect of CO₂ enrichment and irradiance on the growth, morphology and gas exchange of a C₃ (*Panicum laxum*) and a C₄ (*Panicum antodotale*) grass. *Aust. J. Plant Physiol.*, 1997, 24, 227–237.
- 47. Gouk, S. S., Yong, J. W. H. and Hew, C. S., Effects of superelevated CO₂ on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. *J. Plant Physiol.*, 1997, **151**, 129–136.
- Idso, S. B. and Kimball, B. A., Effects of long-term atmospheric CO₂ enrichment on the growth and fruit production of sour orange trees. *Global Change Biol.*, 1997, **3**, 89–96.
- Winter, K., Richter, A., Engelbrecht, B., Posada, J., Virgo, A. and Popp, M., Effect of elevated CO₂ on growth and crassulacean-acid-metabolism activity of *Kalanchoë pinnata* under tropical conditions. *Planta*, 1997, **201**, 389–396.
- Graham, E. A. and Nobel, P. S., Long-term effects of a doubled atmospheric CO₂ concentration on the CAM species Agave deserti. J. Exp. Bot., 1996, 47, 61–69.
- 51. Nobel, P. S., Israel, A. A. and Wang, N., Growth, CO₂ uptake, and responses of the carboxylating enzymes to inorganic carbon in two highly productive CAM species at current and doubled CO₂ concentrations. *Plant Cell Environ.*, 1996, **19**, 585–592.
- 52. Nobel, P. S., Responses of some North American CAM plants to freezing temperatures and doubled CO₂ concentrations: Implica-

CURRENT SCIENCE, VOL. 99, NO. 1, 10 JULY 2010

tions of global climate change for extending cultivation. J. Arid Environ., 1996, **34**, 187–196.

- 53. Mousseau, M. *et al.*, Growth strategy and tree response to elevated CO₂: A comparison of beech (*Fagus sylvatica*) and sweet chestnut (*Castanea sativa* Mill.). In *Carbon Dioxide and Terrestrial Ecosystems* (eds Koch, G. W. and Mooney, T. A.), Academic Press, San Diego, CA, 1996, pp. 71–86.
- Norby, R. J., Wullschleger, S. D., Gunderson, C. A. and Nietch, C. T., Increased growth efficiency of *Quercus alba* trees in a CO₂-enriched atmosphere. *New Phytol.*, 1995, **131**, 91–97.
- Bosac, C., Gardner, S. D. L., Taylor, G. and Wilkins, D., Elevated CO₂ and hybrid poplar: a detailed investigation of root and shoot growth and physiology of *Populus euramericana*, 'Primo'. *Forest Ecol. Manag.*, 1995, **74**, 103–116.
- Mauney, J. R., Lewin, K. F., Hendrey, G. R. and Kimball, B. A., Growth and yield of cotton expose to free-air CO₂ enrichment. *Crit. Rev. Plant Sci.*, 1992, **11**, 213–222.
- Wildman, S. G., Along the trail from fraction 1 protein to rubisco (ribulose bisphosphate carboxylase-oxygenase). *Photosynth. Res.*, 2002, **73**, 243-250.
- Bernacchi, C. J., Pimentel, C. and Long, S. P., *In vivo* temperature response functions of parameters required to model RuBP-limited photosynthesis. *Plant Cell Environ.*, 2003, 26, 1419–1430.
- Ogren, W. L., Affixing the O to rubisco: Discovering the source of photorespiratory glycolate and its regulation. *Photosynth. Res.*, 2003, **76**, 53–63.
- Farquhar, G. D., von Caemmerer, S. and Berry, J. A., A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta*, 1980, **149**, 78–90.
- Ainsworth, E. A. and Rogers, A., The response of photosynthesis and stomatal conductance to rising (CO₂): Mechanisms and environmental interactions. *Plant Cell Environ.*, 2007, **30**, 258– 270.
- Woodrow, I. E., Flux control analysis of the rate of photosynthetic CO₂ assimilation. In *Photosynthesis in silico* (eds Laiska, A., Nedbal, L. and Govindjee), Springer, The Netherlands, 2009, pp. 349–360.
- Majeau, N. and Coleman, J. R., Effect of CO₂ on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. *Plant Physiol.*, 1996, **112**, 569–574.
- Cervigni, T., Teofani, F. and Bassanelli, C., Effect of CO₂ on carbonic anhydrase in *Avena sativa* and *Zea mays. Phytochemistry*, 1971, 10, 2991–2994.
- Raines, C. A., Horsnell, P. R., Holder, C. and Lioyd, J. C., *Arabidopsis thaliana* carbonic anhydrase: cDNA sequence and effect of CO₂ on mRNA levels. *Plant Mol. Biol.*, 1992, 20, 1143– 1148.
- Bowes, G., Facing the inevitable: Plants and increasing atmospheric CO₂ levels. *Annu. Rev. Plant Physiol. Plant Mol. Biol.*, 1993, 44, 309–332.
- Maroco, J. P., Edwards, G. E. and Ku, M. S. B., Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. *Planta*, 1999, **210**, 115–125.
- 68. Stitt, V., von Schaeven, A. and Willmitzer, L., 'Sink' regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin cycle enzymes and an increase of glycolytic enzymes. *Planta*, 1991, **183**, 40–50.
- Pritchard, S. G. *et al.*, Elevated CO₂ and plant structure: A review. *Global Change Biol.*, 1999, 5, 807–837.
- Hatch, M. D. and Slack, C. R., Photosynthesis by sugar-cane leaves. *Biochem. J.*, 1966, **101**, 103–110.
- von Caemmerer, S. and Furbank, R. T., The C₄ pathway: An efficient CO₂ pump. *Photosynth. Res.*, 2003, 77, 191–207.
- Poorter, H., Roumet, C. and Campbell, B. D., Interspecific variation in the growth response of plants to elevated (CO₂): A search for functional types. In *Carbon Dioxide, Populations, and Com-*

munities (eds Korner, C. and Bazzaz, F. A.), Academic Press, New York, 1996, pp. 375–412.

- Anderson, L. J., Maherali, H., Johnson, H. B., Polley, H. W. and Jackson, R. B., Gas exchange and photosynthetic acclimation over subambient to elevated CO₂ in a C₃-C₄ grassland. *Global Change Biol.*, 2001, 7, 693-707.
- Cousins, A. B. *et al.*, Photosystem II energy use, non-photochemical quenching and the xanthophyll cycle in *Sorghum bicolor* grown under drought and free-air CO₂ enrichment (FACE) conditions. *Plant Cell Environ.*, 2002, **25**, 1551–1559.
- Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P. and Ort, D. R., Elevated CO₂ effects on plant carbon, nitrogen and water relations: six important lessons from FACE. *J. Exp. Bot.*, 2009, **60**, 2859–2876.
- Ghannoum, O., von Caemmerer, S., Ziska, L. H. and Conroy, J. P., The growth response of C₄ plants to rising atmospheric CO₂ partial pressure: A reassessment. *Plant Cell Environ.*, 2000, 23, 931–942.
- Ziska, L. H., Sicher, R. C. and Bunce, J. A., The impact of elevated carbon dioxide on the growth and gas exchange of three C₄ species differing in CO₂ leak rates. *Physiol. Plant.*, 1999, **105**, 74–80.
- Winter, K. and Smith, J. A. C., An introduction to crassulacean acid metabolism: biochemical principles and biological diversity. In *Crassulacean Acid Metabolism. Biochemistry, Ecophysiology* and Evolution. Ecological Studies (eds Winter, K. and Smith, J. A. C.), Springer, Berlin, 1996, pp. 1–13.
- Reddy, A. R. and Das, V. S. R., CAM photosynthesis: Ecophysiological and molecular strategies for survival. In *Probing Photosynthesis: Mechanism, Regulation and Adaptation* (eds Yunus, M., Pathre, U. and Mohanty, P.), Taylor and Francis, UK, 2000, pp. 342–363.
- Osmond, C. B., Crassulacean acid metabolism: A curiosity in context. Annu. Rev. Plant Physiol., 1978, 29, 379–414.
- Drennan, P. M. and Nobel, P. S., Responses of CAM species to increasing atmospheric CO₂ concentrations. *Plant Cell Environ.*, 2000, 23, 767–781.
- Borland, A. M., Griffiths, H., Hartwell, J. and Smith, J. A. C., Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. *J. Exp. Bot.*, 2009, **60**, 2879–2896.
- Yoon, S. T., Hoogenboom, G., Flitcroft, I. and Bannayan, M., Growth and development of cotton (*Gossypium hirsutum* L.) in response to CO₂ enrichment under two different temperature regimes. *Environ. Exp. Bot.*, 2009, 67, 178–187.
- Allen Jr, L. H. and Vu, J. C., Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. *Agr. For. Meteorol.*, 2009, **149**, 820–830.
- Zhang, S. R., Dang, Q. L. and Yu, X. G., Nutrient and (CO₂) elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. *For. Ecol. Manag.*, 2006, 234, 238–244.
- Cao, B., Dang, Q. L., Yü, X. and Zhang, S., Effects of (CO₂) and nitrogen on morphological and biomass traits of white birch (*Betula papyrifera*) seedlings. *For. Ecol. Manag.*, 2008, 254, 217–224.
- Fleisher, D. H., Timlin, D. J. and Reddy, V. R., Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. *Agr. For. Meteorol.*, 2008, 148, 1109–1122.
- Wang, X. W., Zhao, M., Mao, Z. J., Zhu, S. Y., Zhang, D. L. and Zhao, X. Z., Combination of elevated CO₂ concentration and elevated temperature and elevated temperature only promote photosynthesis of *Quercus mongolica* seedlings. *Russ. J. Plant Physiol.*, 2008, 55, 1021–4437.
- Robredo, A., Pérez-López, U., Sainz de la Maza, H., González-Moro, B., Lacuesta, M. and Mena-Petite, A., Elevated CO₂ alle-

viates the impact of the drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. *Environ. Exp. Bot.*, 2007, **59**, 252–263.

- Thiagarajan, A., Lada, R. and Joy, P., Compensatory effects of elevated CO₂ concentration on the inhibitory effects of high temperature and irradiance on photosynthetic gas exchange in carrots. *Photosynthetica*, 2007, 45, 355–362.
- Franzaring, J., Hogy, P. and Fangmeier, A., Effects of free-air CO₂ enrichment on the growth of summer oilseed rape (*Brassica napus* cv. Campino). *Agr. Ecosyst. Environ.*, 2008, **128**, 127– 134.
- Zhang, S. R. and Dang, Q. L., Effects of [CO₂] and nutrition on photosynthetic functions of white birch. *Tree Physiol.*, 2006, 26, 1458–1467.
- 93. Qaderi, M. M., Kurepin, L. V. and Reid, D. M., Growth and physiological responses of canola (*Brassica napus*) to three components of global climate change: temperature, carbon dioxide and drought. *Physiol. Plant.*, 2006, **128**, 710–721.
- Reddy, K. R. and Zhao, D., Interactive effects of elevated CO₂ and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. *Field Crop Res.*, 2005, **94**, 201–213.
- Widodo, W., Vu, J. C. V., Boote, K. J., Baker, J. T. and Allen Jr, L. H., Elevated growth CO₂ delays drought stress and accelerates recovery of rice leaf photosynthesis. *Environ. Exp. Bot.*, 2003, 49, 259–272.
- Vu, J. C. V., Newman, Y. C., Allen Jr, L. H., Gallo-Meagher, M. and Zhang, M. Q., Photosynthetic acclimation of young sweet orange trees to elevated growth CO₂ and temperature. *J. Plant Physiol.*, 2002, **159**, 147–157.
- Polley, H. W., Johnson, H. B. and Derner, J. D., Soil and plant water dynamics in a C₃/C₄ grassland exposed to a subambient to superambient CO₂ gradient. *Global Change Biol.*, 2002, 8, 1118– 1129.
- Adam, N. R., Ham, J. M. and Owensby, C. E., The effect of CO₂ enrichment on leaf photosynthetic rates and instantaneous water use efficiency of *Andropogon gerardii* in the tallgrass prairie. *Photosynth. Res.*, 2000, **65**, 121–129.
- Taub, D. R., Seemann, J. R. and Coleman, J. S., Growth in elevated CO₂ protects photosynthesis against high-temperature damage. *Plant Cell Environ.*, 2000, 23, 649–656.
- 100. Hamerlynck, E. P., Huxman, T. E., Loik, M. E. and Smith, S. D., Effects of extreme high temperature, drought and elevated CO₂ on photosynthesis of the Mojave Desert evergreen shrub, *Larrea tridentate. Plant Ecol.*, 2000, **148**, 183–193.
- 101. Faria, T., Schwanz, P., Polle, A., Pereira, J. S. and Chaves, M. M., Responses of photosynthetic and defense systems to high temperature stress in *Quercus suber* L. seedlings grown under elevated CO₂. *Plant Biol.*, 1999, **1**, 365–371.
- 102. Reid, C., Fiscus, E. and Burkey, K., Combined effects of chronic ozone and elevated CO₂ on rubisco activity and leaf components in soybean *Glycine max. J. Exp. Bot.*, 1998, **49**, 1999–2011.
- 103. Olszyk, D. M. and Wise, C. W., Interactive effects of elevated CO₂ and O₃ on rice and flacca tomato. *Agr. Ecosyst. Environ.*, 1997, **66**, 1–10.
- Roden, J. S. and Ball, M. C., The effect of elevated (CO₂) on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. *Plant Physiol.*, 1996, **111**, 909–919.
- 105. Bassow, S. L., McConnaughay, K. D. M. and Bazzaz, F. A., The response of temperate tree seedlings grown in elevated CO₂ to extreme temperature events. *Ecol. Appl.*, 1994, **4**, 593–603.

- 106. Morison, J. I. L. and Lawlor, D. W., Interactions between increasing CO₂ concentration and temperature on plant growth. *Plant Cell Environ.*, 1999, 22, 659–682.
- 107. Ainsworth, E. A. and Long, S. P., What have we learnt from 15 years of free air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol., 2005, **165**, 351–372.
- Reich, P. B., Hungate, B. A. and Luo, Y. Q., Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. *Annu. Rev. Ecol. Evol. Syst.*, 2006, 37, 611–636.
- Wang, X., Effects of species richness and elevated carbon dioxide on biomass accumulation: A synthesis using metaanalysis. *Oecologia*, 2007, 152, 595–605.
- Uprety, D. C. and Mahalaxmi, V., Effect of elevated CO₂ and nitrogen nutrition on photosynthesis, growth and carbon– nitrogen balance in *Brassica juncea*. J. Agron. Crop Sci., 2000, 184, 271–276.
- Wullschleger, S. D., Tschaplinski, T. J. and Norby, R. J., Plant water relations at elevated CO₂ – implications for water-limited environment. *Plant Cell Environ.*, 2002, 25, 319–331.
- 112. Van Oosten, J. J. and Besford, R. T., Sugar feeding mimics effect of acclimation to high CO₂: rapid downregulation of RuBisCO small subunit transcripts, but not of the large subunit transcripts. *J. Plant Physiol.*, 1994, **143**, 306–312.
- Taylor, G. *et al.*, The transcriptome of *Populus* in elevated CO₂. *New Phytol.*, 2005, **167**, 143–154.
- 114. Ainsworth, E. A., Rogers, A., Vodkin, L. O., Walter, A. and Schurr, U., The effects of elevated CO₂ concentration on soybean gene expression. An analysis of growing and mature leaves. *Plant Physiol.*, 2006, **142**, 135–147.
- 115. Li, P., Ainsworth, E. A., Leakey, A. D. B., Ulanov, A., Lozovaya, V., Ort, D. R. and Bohnert, H. J., *Arabidopsis* transcript and metabolite profiles: ecotype-specific responses to open-air elevated (CO₂). *Plant Cell Environ.*, 2008, **31**, 1673–1687.
- Romanova, A. K., Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO₂. *Russ. J. Plant Physiol.*, 2005, **52**, 112–126.
- 117. Martin, T., Oswald, O. and Graham, I. A., *Arabidopsis* seedlings growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability. *Plant Physiol.*, 2002, **128**, 472–481.
- Fukayama, H. *et al.*, Rice plant response to long term CO₂ enrichment: gene expression profiling. *Plant Sci.*, 2009, **177**, 203–210.
- Govindjee, Kern, J. F., Messinger, J. and Whitmarsh, J., Photosystem II. In *Encyclopedia of Life Sciences* (ELS), John Wiley, Chichester, 2010; doi: 10.1002/9780470015902.a0000669.pub2.

ACKNOWLEDGEMENTS. A.R.R. thanks Department of Biotechnology, Department of Science and Technology (FIST), UGC–CAS, for financial support. A.S.R. acknowledges DST J.C. Bose Fellowship. G.K.R. received Junior Research Fellowship from Department of Biotechnology, Government of India. We thank Govindjee, University of Illinois, USA for his critical reading of a preliminary draft as well as the final version of our manuscript. We are grateful to Baishnab C. Tripathy for editing this manuscript and to the reviewers for their valuable suggestions.

Received 5 May 2010; revised accepted 26 May 2010